Site Overlay

## Fundamentals of Trigonometry

Introduction Trigonometry is an important branch of mathematics. Trigonometry is a Greek word. The word Trigonometry has been divided into three phases. 1 TRI mean THREE 2 GONI mean ANGLES 3 MERTON mean MEASUREMENT it

## Derivative of Constant. Proof and Examples

What is Derivative of constant. Here we will prove that derivative of the constant is zero. Method 1 Let c is constant. Now by using ab-initio method. Dividing on both sides. Applying on both sides.

## Derivative of Inverse Hyperbolic Functions

Derivatives of inverse hyperbolic functions where where where where where where Derivatives of sin inverse hyperbolic function Let. Differentiating w.r.t x Now by using formula. Now by using eq(1) Derivatives of cos inverse hyperbolic function

## Derivative of Trigonometric functions

Derivative of Trigonometric functions Here will will discuss Derivative of sinx, cosx, tanx, cosecx, secx and cotx functions. Derivative of sinx function dividing on both sides. as we know This is the required derivative of

## Binomial Expansion with Examples and Solution

Binomial expansion: are called meaningless when is negative or fraction and  are exponents and  is called index. index is always less then one. exponent is always less then one. This series is called Binomial series.

## Binomial Theorem with Examples

Binomial Theorem: where and are real numbers and are binomial cofficient. and are exponents and is called index. The exponent of decreases from index to zero. The exponent of increases from zero to index. The

## Maclaurin series expension with examples

Maclaurin series expension. The expension of is called the Maclaurin series expension. The above expansion is called Maclaurin Theorem. Example Apply Maclaurin series expension. Add title The expension of is called the Maclaurin series expension.

## Differentiation formulas with Proof.

Derivative of product rule or differentiation of product rule let where and are function of Derivative of quotient rule or differentiation of quotient rule where and are function of Derivative of power rule or differentiation