Erfi Imaginary Error Function

Introduction

Let x be a complex variable of C\backslash\;{\infty} .The function Imaginary Error Function
erfi is defined by the following second-order differential equation

-2x\;\frac{\partial y(x)}{\partial x}+\frac{\partial^2y(x)}{\partial x^2}=0———-(1)

Erfi

The initial condition of (1) at 0 is

erfi(0)=0

\;\frac{\partial erfi\;(x)}{\partial x}(0)={\textstyle\frac2{\sqrt\pi}}

Series and Asymptotic Expansions

2.1 Taylor expansion at 0.

2.1.1 First terms.

erfi\;(x)=\frac2{\sqrt\pi}x+\frac2{3\sqrt\pi}x^3+\frac1{5\sqrt\pi}x^5+\frac1{21\sqrt\pi}x^7+\frac1{108\sqrt\pi}x^9+\frac1{660\sqrt\pi}x^{11}+\frac1{4680\sqrt\pi}x^{13}+\frac1{37800\sqrt\pi}x^{15}+O(x^{16})

2.1.2 General form.

erfi(x)=\sum_{n=0}^\infty u(n)x^n

The coefficients u(n) satisfy the recurrence

-2nu(n)+(n2 + 3n+2)u(n+2)=0 —————(.2.1.2.2)

Initial conditions of 2.1.2.2 are given by

U(0)=0

U(1)=\frac2{\sqrt\pi}

Erf Imaginary Error Function for Floating-Point and Symbolic Numbers:

Depending on its logic, erf can return floating-point or exact symbolic results. Work out the imaginary error function for these numbers. Because these numbers are not symbolic objects, you get floating-point results.

s=\left[erfi(\frac12),erfi(1.41),\;erfi(\sqrt{2)}\right]

s=0.615\;\;\;\;\;\;\;\;3.7382\;\;\;\;\;\;3.7731

Evaluate the imaginary error function for the same numbers converted to symbolic objects. For most symbolic numbers, erf x returns undetermined symbolic calls.

Imaginary Error Function for Variables and Expressions:

Compute the imaginary error function for x and \;\sin(x)\;+\;x\ast e^x . For most symbolic variables and expressions, erfi x returns unresolved symbolic calls.

syms x

f = sin(x) + x*e^x ;

erfi(x) .

erfi(f)

ans =

erfi(x) .

ans =

erfi(sin(x) + x*e^x

“Error Function”

In mathematics, the error function is also called the Gauss error function. often denoted by erf, is a complex function of a complex variable defined as

erf\; z = \frac2\pi\int_0^z\;e^{-t^2}\;dt.

This integral is a special function that occurs often in calculus. In calculus, a function argument is a real number. If the function argument is real, then the function value is also a real number.

Properties:

The property erf\;(-z)\;=\;-erf\;z\; means that the error function is an odd function. This directly results from the fact that the integrand e^{-t^2} is an even (integrating an even function gives an odd function and vice versa.

For complex number z :

erf\;\overline z\;=\overline{erf\;z}.

where \overline z\; is complex conjugate of z

for math, basic knowledge click here

Spread the love
Azhar Ali

Azhar Ali

I graduated in Mathematics from the University of Sargodha, having master degree in Mathematics.

Leave a Reply

Your email address will not be published.

Mathematics is generally known as Math in US and Maths in the UK.

Contact Us

Copyright by Double Math. All Right Reserved 2019 to 2022