Explicit Differentiation and its Examples with Solution

Explicit Differentiation

Explicit function: If y is easily expressed in term of the independent variables x,Then y is called an Explicit function of x. Symbolically it is written as y=f(x)

Examples:

y+3x-5=0

y^5+2x^3-3=0

y^2=left(x+4right)^frac12

Procedure: 
  • Step (1) when x and y are not amalgamated or Explicit we assumethat y is differentiable function of x.
  • Step (2) Differentiate both sides of eq w.r.t x.
  • Step (3) Solve the resulting eq for frac{dy}{dx}
Example 1: 

Explicit Differentiation

y+3x-5=0

Differentiate w.r.t x

frac d{dx}left(y+3x-5right)=frac d{dx}0

[sum and difference rule]

frac d{dx}y+frac d{dx}3x-frac d{dx}5=0

frac d{dx}y+3frac d{dx}x-0=0

frac d{dx}y+3=0

boxed{frac d{dx}y=-3}

Example 2:

Explicit Differentiation.

y^5+2x^3-3=0

Differentiate w.r.t x

frac d{dx}left(y^5+2x^3-3right)=frac d{dx}0

[sum and difference rule]

frac d{dx}y^5+frac d{dx}2x^3-frac d{dx}3=0

5y^4frac{dy}{dx}+2frac d{dx}x^3-0=0

5y^4frac{displaystyle dy}{displaystyle dx}+2(3x^2)=0

5y^4frac{displaystyle dy}{displaystyle dx}+6x^2=0

5y^4frac{displaystyle dy}{displaystyle dx}=-6x^2

boxed{frac{displaystyle dy}{displaystyle dx}=frac{-6x^2}{5y^4}}

Example 3: 

Explicit Differentiation

y^2=left(x+4right)^frac12

Differentiate w.r.t x

frac d{dx}y^2=frac d{dx}left(x+4right)^frac12

2yfrac d{dx}y=frac12left(x+4right).^{frac12-1}frac d{dx}left(x+4right)

2yfrac d{dx}y=frac12left(x+4right).^{-frac12}left[frac d{dx}x+frac d{dx}4right]

2yfrac d{dx}y=frac12left(x+4right).^{-frac12}left[1+0right]

2yfrac d{dx}y=frac12left(x+4right).^{-frac12}

frac d{dx}y=frac{frac12left(x+4right).^{-frac12}}{2y}

frac d{dx}y=frac{left(x+4right).^{-frac12}}{4y}

boxed{frac d{dx}y=frac1{4y.left(x+4right).^{-frac12}}}

Leave a Comment

Your email address will not be published. Required fields are marked *