Product Rule of Derivatives, Definition and Examples

Product Rule of Derivatives:If f and g are differentiable at x, then f_g is also differentiable at x and

\lbrack f(x)g(x)\rbrack'=f(x)g'(x)+f'(x)g(x).

i.e,\;\;\;\;\;\frac d{dx}\lbrack f(x)g(x)\rbrack=f(x)\frac d{dx}g(x)+g(x)\frac d{dx}f(x).

Product rule of derivatives

\phi(x\;)=f\left(x\right)\;g\left(x\right)\;...........................(1)

\phi(x+\delta x\;)=f\left(x+\delta x\right)\;g\left(x+\delta x\right)\;\;........(2).

Subtracting  eq(2)- eq(1).

\phi(x+\delta x\;)-\phi(x)=f\left(x+\delta x\right)\;g\left(x+\delta x\right)\;-\;f\left(x\right)\;g\left(x\right).

Subtracting and Adding f\left(x\right)\;g\left(x+\delta x\right)\;\;.

\phi(x+\delta x\;)-\phi(x)=f\left(x+\delta x\right)\;g\left(x+\delta x\right)\;-\;f\left(x\right)\;g\left(x+\delta x\right)+f\left(x\right)g\left(x+\delta x\right)-f\left(x\right)\;g\left(x\right).

\phi(x+\delta x\;)-\phi(x)=\left[f\left(x+\delta x\right)-f\left(x\right)\right]\;g\left(x+\delta x\right)\;+\;f\left(x\right)\left[g\left(x+\delta x\right)-\;g\left(x\right)\right].

\begin{array}{l}\frac{\phi(x+\delta x)-\phi(x)}{\delta x}=\left[\frac{\left[f\left(x+\delta x\right)-f\left(x\right)\right]}{\delta x}\right]g\left(x+\delta x\right)+f\left(x\right)\left[\frac{\left[g\left(x+\delta x\right)-g\left(x\right)\right]}{\delta x}\right]\end{array}.

                     Taking\;\;\;\underset{\delta x\rightarrow o}{lim}.

\begin{array}{l}\underset{\delta x\rightarrow o}{lim}\left[\frac{\left[\phi\left(x+\delta x\right)-\phi\left(x\right)\right]}{\delta x}\right]=\underset{\delta x\rightarrow o}{lim}\left[\frac{\left[f\left(x+\delta x\right)-f\left(x\right)\right]}{\delta x}\right]g\left(x+\delta x\right)+f\left(x\right)\left[\frac{\left[g\left(x+\delta x\right)-g\left(x\right)\right]}{\delta x}\right]\end{array}.

\begin{array}{l}\underset{\delta x\rightarrow o}{lim}\left[\frac{\left[\phi\left(x+\delta x\right)-\phi\left(x\right)\right]}{\delta x}\right]=\underset{\delta x\rightarrow o}{lim}\frac{\left[f\left(x+\delta x\right)-f\left(x\right)\right]}{\delta x}\underset{\delta x\rightarrow o}{lim}g\left(x+\delta x\right)+\underset{\delta x\rightarrow o}{lim}f\left(x\right)\underset{\delta x\rightarrow o}{lim}\frac{\left[g\left(x+\delta x\right)-g\left(x\right)\right]}{\delta x}\end{array}.

\phi'(x\;)=f'\left(x\right)\;g\left(x\right)+f\left(x\right)\;g'\left(x\right)\;\;\;\;\;\;\;\;\;;\underset{\delta x\rightarrow0}{lim}g\left(x+\delta x\right)=g(x)

\frac d{dx}\;\left[f\left(x\right)\;g\left(x\right)\;\right]=\frac d{dx}\;\left[f\left(x\right)\right]\;g\left(x\right)+\frac d{dx}\;\left[g\left(x\right)\right]\;f\left(x\right).

Example 1  {Product rule of derivatives}

Let f(x)=3x and g(x)=5x^3

Now we use product Rule

\frac d{dx}\left[f\left(x\right).g\left(x\right)\right]=\frac d{dx}\left[3x.5x^3\right]

\frac d{dx}\left[f\left(x\right).g\left(x\right)\right]=\left(5x^3\right)\frac d{dx}\left(3x\right)+3x\frac d{dx}\left(5x^3\right)

\frac d{dx}\left[f\left(x\right).g\left(x\right)\right]=\left(5x^3\right)\left(3\right)\frac d{dx}\left(x\right)-3x\left(5\right)\frac d{dx}\left(x^3\right)

\frac d{dx}\left[f\left(x\right).g\left(x\right)\right]=\left(5x^3\right)\left(3\right)\left(1\right)-3x\left(5\right)\left(3x^2\right)

\frac d{dx}\left[f\left(x\right).g\left(x\right)\right]=15x^3-30x^3

\boxed{\frac d{dx}\left[f\left(x\right).g\left(x\right)\right]=-15x^3}

Example 2    [Product rule of derivatives]

Let f(x)=3x^2 and g(x)=7x

Now we use product rule

\frac d{dx}\left[f\left(x\right).g\left(x\right)\right]=\frac d{dx}\left(3x^2.7x\right)

\frac d{dx}\left[f\left(x\right).g\left(x\right)\right]=7x\frac d{dx}\left(3x^2\right)+3x^2\frac d{dx}\left(7x\right)

\frac d{dx}\left[f\left(x\right).g\left(x\right)\right]=7x\left(3\right)\frac d{dx}\left(x^2\right)+3x^2\left(7\right)\frac d{dx}\left(x\right)

\frac d{dx}\left[f\left(x\right).g\left(x\right)\right]=7x\left(3\right)\left(2x\right)+3x^2\left(7\right)\left(1\right)

\frac d{dx}\left[f\left(x\right).g\left(x\right)\right]=42x^2+21x^2

\boxed{\frac d{dx}\left[f\left(x\right).g\left(x\right)\right]=63x^2}

you can also see quotient rule

Spread the love
Azhar Ali

Azhar Ali

I graduated in Mathematics from the University of Sargodha, having master degree in Mathematics.

Leave a Reply

Your email address will not be published.

Mathematics is generally known as Math in US and Maths in the UK.

Contact Us

Copyright by Double Math. All Right Reserved 2019 to 2022