Field definition Math

Field definition math: A set S is called a field if the operations of addition ‘+ ’ and multiplication ‘. ’ on S satisfy
the following properties are written in tabular form:

Addition
Closure
for any set S\: a,b\in S \newline a+b \in S

Commutativity
for any \: a,b\in S \newline a+b = b+a
Associativity
for any \: a,b,c\in S \newline \left ( a+b \right )+c = a+\left ( b+c \right )
Existence of Identity
for any a\in S\: \exists \: 0\in S
such that
a+0=0+a=a
Existence of Inverses
for any a\in S\:\: \: \exists \: -a\in S
such that
a+\left ( -a \right )=\left ( -a \right )a=0
Distributivity
for any a,b,c\in S \newline a\left ( b+c \right )=ab+ac \newline or\: \: \: \left ( b+c \right )a=ba+ca
Multiplication
closure
for any set S\: a,b\in S \newline a\times b \in S

Commutativity
for any \: a,b\in S \newline a\times b = b\times a
Associativity

for any \: a,b,c\in S \newline \left ( a+b \right )+c = a+\left ( b+c \right )
Existence of Identity
for any a\in S\: \exists \: 1\in S
such that
a.1=1.a=a
Existence of Inverses
for any a\in S\:\: \:;a\neq 0\: \: \exists \:\: \: \frac{1}{a}\in S
such that
a\left ( \frac{1}{a} \right )= \left ( \frac{1}{a} \right )a= 1
Distributivity
for any a,b,c\in S \newline a\left ( b+c \right )=ab+ac \newline or\: \: \: \left ( b+c \right )a=ba+ca

All the above mentioned properties hold for \Re \: \: \:\: \mathbb{C}\: \: \: \: \mathbb{Q}.

Hence \Re \: \: \:\: \mathbb{C}\: \: \: \: \mathbb{Q} are a field in math

Spread the love
Azhar Ali

Azhar Ali

I graduated in Mathematics from the University of Sargodha, having master degree in Mathematics.

Leave a Reply

Your email address will not be published.

Mathematics is generally known as Math in US and Maths in the UK.

Contact Us

Copyright by Double Math. All Right Reserved 2019 to 2022