Maclaurin series expension with examples

Maclaurin series expension.

\boxed{f\left(x\right)=f\left(0\right)+f'\left(0\right)x+\frac{f''\left(0\right)}{2!}x^2+\frac{f'''\left(0\right)}{3!}x^3+\frac{f^{iv}\left(0\right)}{4!}x^4+……}

The expension of f(x) is called the Maclaurin series expension.

The above expansion is called Maclaurin Theorem.

Example
f(x)=a^x

Apply Maclaurin series expension.

f'(x)=a^x\ln x

Add title

\boxed{f\left(x\right)=f\left(0\right)+f'\left(0\right)x+\frac{f''\left(0\right)}{2!}x^2+\frac{f'''\left(0\right)}{3!}x^3+\frac{f^{iv}\left(0\right)}{4!}x^4+……}

The expension of f(x) is called the Maclaurin series expension.

The above expansion is called Maclaurin Theorem.

Example

f(x)=a^x

Apply Maclaurin series expension.

f'(x)=a^x(\ln x)

f''(x)=a^x(\ln x)^2

f'''(x)=a^x(\ln x)^3

f^{iv}(x)=a^x(\ln x)^4

Put x=0 above equations

f(0)=a^0

\boxed{f(0)=1}

f'(0)=a^0(\ln x)

\boxed{f'(0)=(\ln x)}

f''(0)=a^0(\ln x)^2

\boxed{f''(0)=(\ln x)^2}

f'''(0)=a^0(\ln x)^3

\boxed{f'''(0)=(\ln x)^3}

f^{iv}(0)=a^0(\ln x)^4

\boxed{f^{iv}(0)=(\ln x)^4}

Substituting these values in the formula.

\boxed{f\left(x\right)=f\left(0\right)+f'\left(0\right)x+\frac{f''\left(0\right)}{2!}x^2+\frac{f'''\left(0\right)}{3!}x^3+\frac{f^{iv}\left(0\right)}{4!}x^4+……}

\boxed{a^x=1+\ln a+\frac{\left(\ln\;a\right)^2}{2!}x^2+\frac{\left(\ln\;a\right)^3}{3!}x^3+\frac{\left(\ln\;a\right)^4}{4!}x^4+\dots\dots}

Example

y=x^n n\neq0

Apply Maclaurin series expension.

y'=nx^{n-1}

y''=n(n-1)x^{n-2}

y'''=n(n-1)(n-2)x^{n-3}

y^{iv}=n(n-1)(n-2)(n-3)x^{n-4}

Put x=0 above equations

y(0)=0^n

\boxed{y(0)=1}

y'(0)=n0^{n-1}

\boxed{y'(0)=n}

y''(0)=n(n-1)0^{n-2}

\boxed{y''(0)=n(n-1)}

y'''(0)=n(n-1)(n-2)0^{n-3}

\boxed{y'''(0)=n(n-1)(n-2)}

y^{iv}(0)=n(n-1)(n-2)(n-3)0^{n-4}

\boxed{y^{iv}(0)=n(n-1)(n-2)(n-3)}

Substituting these values in the formula.

\boxed{f\left(x\right)=f\left(0\right)+f'\left(0\right)x+\frac{f''\left(0\right)}{2!}x^2+\frac{f'''\left(0\right)}{3!}x^3+\frac{f^{iv}\left(0\right)}{4!}x^4+……}

\boxed{x^n=1+nx+\frac{n(n-1)x^2}{2!}+\frac{n(n-1)(n-2)x^3}{3!}+\frac{n(n-1)(n-2)(n-4)x^4}{4!}…}

Spread the love
Azhar Ali

Azhar Ali

I graduated in Mathematics from the University of Sargodha, having master degree in Mathematics.

Leave a Reply

Your email address will not be published.

Mathematics is generally known as Math in US and Maths in the UK.

Contact Us

Copyright by Double Math. All Right Reserved 2019 to 2022