Mathematics

Vector Triple Product

Vector Triple Product Definition: Consider    be the three vectors, then the vector triple product of vectors is defined as Important Note: Through given any three vectors the following products are the vector triple products : Employing the well-known properties of the vector product, we get the following theorems. Theorem 1 : It satisfies the […]

Vector Triple Product Read More »

Quadrilateral Definition in Math

Quadrilateral Definition in Math: A quadrilateral (in geometry) can be defined as a closed,  two-dimensional shape which has four straight sides(edges).   The polygon which has four vertices or corners. Interior angles equal to 360^\circ[\latex] A quadrilateral can be regular or irregular We can find the shape of quadrilaterals in various things around us, for example in a chessboard, a

Quadrilateral Definition in Math Read More »

Sudut , Sudut Tumpul , Sudut Lancip

Ketika dua garis lurus atau sinar bertemu pada satu titik yang sama, mereka membentuk sudut. Titik kontak yang sama disebut titik sudut. Kata sudut berasal dari kata Latin bernama ‘angulus,’ yang berarti “sudut.” Simbol Sudut: Simbol [katex]\angle[/katex] mewakili sudut. Sudut diukur dalam derajat (°) menggunakan busur derajat Contoh Praktis dari Sudut Ada banyak contoh praktis

Sudut , Sudut Tumpul , Sudut Lancip Read More »

Trapesium: Luas Trapesium, Rumus Trapesium

Trapezium adalah salah satu bentuk geometri yang penting dalam matematika. Bentuk ini sering kali dijumpai dalam berbagai konteks, baik dalam dunia nyata maupun dalam pembelajaran matematika. Dalam artikel ini, kita akan membahas pengertian trapesium, sifat-sifatnya, dan beberapa contoh penggunaannya. Pengertian Trapezium Trapezium adalah sebuah bentuk geometri dua dimensi yang memiliki empat sisi. Sisi-sisi tersebut dapat

Trapesium: Luas Trapesium, Rumus Trapesium Read More »

Derivative of Inverse Hyperbolic Functions

derivative of inverse hyperbolic functions where where where where where where Derivatives of sin inverse hyperbolic function Let. Differentiating w.r.t x Now by using formula. Now by using eq(1) Derivatives of cos inverse hyperbolic function Let. Differentiating w.r.t x Now by using formula. Now by using eq(1) Derivatives of Tan inverse hyperbolic function Let. Differentiating

Derivative of Inverse Hyperbolic Functions Read More »

Derivative of Hyperbolic Functions with Examples

Here we will discuss the derivative of hyperbolic functions: Derivative of sin hyperbolic functions: differentiating w.r.t x Now by using the sum and difference rule. This is required derivative of sinhx. Derivative of cos hyperbolic functions: differentiating w.r.t x Now by using the sum and difference rule. This is required derivative of coshx. Derivative of

Derivative of Hyperbolic Functions with Examples Read More »